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Abstract

System availability is an important subject in the design field of industrial system as the system structure becomes more complicated.
While improving the system’s reliability, the cost is also on the upswing. The availability is increased by a redundancy system. Redun-
dancy Allocation Problem (RAP) of a series-parallel system is traditionally resolved by experienced system designers. We proposed a
genetic algorithm based optimization model to improve the design efficiency. The objective is to determine the most economical policy
of components’ mean-time-between-failure (MTBF) and mean time-to-repair (MTTR). We also developed a knowledge-based interac-
tive decision support system to assist the designers set up and to store component parameters during the intact design process of repair-
able series-parallel system.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1952, the Advisory Group on the Reliability of Elec-
tronic Equipment (AGREE) defined the reliability in a
broader sense: reliability indicates the probability imple-
menting specific performance or function of products and
achieving successfully the objectives within a time schedule
under a certain environment (Wang, 1992). In general, a
higher priority is placed on quality control rather than reli-
ability in the process of manufacturing. Nonetheless, high
quality is not equivalent to high reliability. For example,
a certain component, which has passed quality control pro-
cedure in conformity to the specifications, may lead to
problems when operating with other components. This
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involves reliability design that is related to electrical or
mechanical interface compatibility among spare parts.

With the rapid technological progress and increasing
complexity of system structure, any failure of any compo-
nent may lead to system malfunction or serious damage.
For instance, a weapon system is a precise and sophisti-
cated system that comprises several sub-systems, compo-
nents and spare parts. Failure of even a single element
will likely have adverse impact upon the operability of
the weapon system, or even threat the national security.

System availability, a concept closely related to reliabil-
ity, refers to the scale of measuring the reliability of a
repairable system. Repairable system indicates a system
that can be repaired to operate normally in the event of
any failure, such as computer network, manufacturing sys-
tem, power plant or fire prevention system. Availability
comprises ‘‘reliability’’ and ‘‘recovery part of unreliability
after repair’’, indicating the probability that repairable sys-
tems, machines or components maintain the function at a
specific moment’’ (Wang, 1992). It is generally expressed
as the operable time over total time.
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In recent years, reliability and availability have expanded
their influence in various industries and fields, thus serve as
an integral quality element in the organization system and
manufacturing process. To maintain the reliability of
sophisticated systems to a higher level, the system’s struc-
tural design or system components of higher reliability shall
be required, or both of them are performed simultaneously
(Henley & Kumampto, 1985).

The system structure is virtually designed under the lim-
itations such as weight, volume or other technologies, so
the reliability cannot be further improved. In this case,
replacing highly reliable components can improve the sys-
tem reliability. While improving the reliability of systems
and components, the associated cost also increases. Thus,
it is a very important topic for decision-makers to fully
consider both the actual business and the quality require-
ments. Redundancy Allocation Problem (RAP) of a ser-
ies-parallel system refers to difficult NP-hard problems
(Chern, 1992). Redundancy allocation is designed depend-
ing upon the experience of system designers, with the
advantages (Chisman, 1998): (1) time-saving and conve-
nient policy-making depending upon years of experience
and (2) decision making via experience in the absence of
information. The disadvantages include: (1) decision-mak-
ing is subjective, without scientific support or evidence and
(2) individual experience-based decision cannot offer an
accurate or optimal design, thus leading to excessive cost.
Due to potential risks, the experience-based empirical law
may not be universally applied (Li, 2001). Additionally,
given the fact of difficult accumulation and inheritance of
design expertise, it would be very helpful to transfer, accu-
mulate and manage design knowledge by applying system-
atic methods and by employing information technologies.
Jeang (1999) suggested that computer-aided simulation
software could contribute to system design or parameteri-
zation. Many information systems were built and a wide
variety of methods were used for the reliability design
(Chen & Hsu, 2006; Liu & Yang, 1999; Moon, Divers, &
Kim, 1998; Varde, Sankar, & Verma, 1998). However, a
well-defined knowledge system for reliability design and
availability optimization was not found in the literature.

Under repairable series-parallel system framework,
there are many methods to determine the optimal parame-
ters of components, such as dynamic planning, integer pro-
gramming, non-linear integer programming and heuristic
or metaheuristic algorithms. As a member of metaheuristic
algorithm, Genetic Algorithm (GA) has proved itself to be
able to approaching optimal solution against any problem.

The purpose of this study is first to utilize Genetic Algo-
rithms to determine MTBF (mean time between failure,
MTBF) and MTTR (mean time to repair, MTTR) of var-
ious components, during the design phase of the repairable
system, and to optimize availability parameters. We pro-
posed an optimization model of repairable series-parallel
system and utilized Genetic Algorithms to find solutions.
We then constructed a knowledge-based information sys-
tem so that the design knowledge can be stored and accu-
mulated. The optimization model and GA procedures
ensure that the cost-effective parameters of system avail-
ability can be obtained, which helps the system designers
formulate optimal design policies and repair policies. The
information system stored the system designs and parame-
ters in the knowledge base and can be retrieved by signifi-
cant features, which facilitates design complexity and
increases design efficiency. Specifically, the objective of this
study is threefold: (1) develop an optimization model of
repairable series-parallel system availability and analyze
the model behavior; (2) utilize genetic algorithms to obtain
optimal parameter of system components in a cost-effective
manner; and (3) construct a knowledge-based information
system to accumulate the design knowledge.

2. Literature review

2.1. Reliability of series-parallel system

Series-parallel system indicates sub-systems in which sev-
eral components are connected in parallel, and then in ser-
ies, or sub-systems that several components are connected
in series, and then in parallel. A series-parallel system can
be improved by four methods (Wang, 1992): (1) use more
reliable components; (2) increase redundant components
in parallel; (3) utilize both #1 and #2; and (4) enable repeat-
edly the allocation of entire system framework. For the
framework of series-parallel system, it is very difficult to
find out an optimal solution under multiple constraint
conditions (Chern, 1992). Misra Algorithm proposed by
Misra and Sharma (1991) solves problems by integer pro-
gramming, which serves as an algorithm searching for
nearby boundary of the domain of feasible solution. Prasad
and Kuo (2000) pointed out that Misra algorithm some-
times cannot yield an optimal solution, and suggested a
method of searching for the upper limit of reliability’s
objective function. Gen, Ida, and Lee (1990, 1993) also
studied how to solve the problem by integer programming.

The reliability of a series-parallel system has drawn
continuous attention in both problem characteristics and
solution methodologies. Nakagawa and Miyazaki (1981)
utilized several examples to compare the mean failure rate
of these methods. After combining Lagrange multiplier
and branch-and-bound technologies, Kohda and Inoue
(1982) and Kim and Yum (1993) solved the reliability of
a series-parallel system by using heuristic algorithm. Kuo,
Lin, Xu, and Zhang (1987) proposed a heuristic algorithm
LMBB. It obtains rapidly the solution close to the optimal
one via Lagrange multiplier. Other large systems, such as
those placing limitation on linear resources proposed by
Li and Haimes (1992), suggested a three-layer decomposi-
tion method for the optimization of system reliability.
Mohan and Shanker (1998) selected system components
via random selection method according to cost limitation.
Hsieh, Chen, and Bricker (1998) utilized genetic algorithms
to solve various reliability design problems, which include
series systems, series-parallel systems and complex (bridge)
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systems. While considering maximum system reliability
and minimal total cost, Li (2001) solved them by multiple
fuzzy objective planning. Yalaoui and Chatelet (2005)
formulated an approximated function for the reliability
allocation problem in a series-parallel system. You and
Chen (2005) proposed an efficient heuristic for series-paral-
lel redundant reliability problems.

2.2. System availability

Under an increasingly complex and diversified system
environment, some researchers tended to use simulation
methods to evaluate the reliability or availability of a com-
plex system, as common estimation methods are subjected
to strict assumptions. Wang (2000) suggested two methods
for the estimation of availability. The first method is appli-
cable when the allocation of MTBF and MTTR is sub-
jected to exponential distribution, while the second one is
to estimate the interval of availability when none of them
is subjected to exponential distribution. These two methods
are examined and compared by the Monte Carlo Simula-
tion. Gordan (1996) utilized statistical and graphic tech-
niques to test data, and allowed for the data analysis of
reliability and availability in cooperation with SAS statis-
tics software.

In order to evaluate the reliability of hydroelectric gener-
ators, Lieber, Nemirovskii, and Rubinstein (1999) proposed
Importance Sampling technique to improve the efficiency of
traditional Monte Carlo Simulation. Hamersma and Cho-
dos (1992) discussed the availability of telephone network
system, indicating that the programs of complex large-scale
network can be prepared by different simulation tools, such
as Pascal and C, or the GPSS simulation language. Chis-
man (1998) proposed a failure-mode method and a flow
method for non-series-parallel hydraulic system, utilized
the GPSS simulation software to simulate the allocation
of TBF and TTR of the two systems. Jeang (2001) used
computer-aided simulation software VSA-3D/Pro for
designing an auxiliary system, and obtained an optimal
solution via statistical regression, thus providing a basis
for parameterization. Mitchell and Murry (1996) simulated
system structure using reliability block diagram (RBD), and
forecasted the availability of a simple series-parallel system,
indicating that spare parts can be applied to improve the
system availability.

Meanwhile, other researches took cost factors into con-
sideration. For example, Propst and Doan (2001) provided
the system framework and electronic evaluation sheets,
which may help review the availability of power system to
improve the system design. In a move to resolve the conflict
between maximum availability and minimum cost, Huang
(1997) utilized the fuzzy multiple objective optimization
and fuzzy attribute function to obtain optimal parameters,
which met the cost and availability limitations. Elegbede
and Adjallah (2003) employed weighed average for
transforming a problem of multiple objective to single
objective and solved it with GA. Martorell, Sánchez,
Carlos, and Serradell (2004) proposed a general framework
for multiple-objective optimization problem based on
reliability, availability, maintainability, safety and resource
criteria. Two GA-based methods, single-objective GA and
multi-objective GA, were used to solve the optimization
problem. De Castro and Cavalca (2006) presented an avail-
ability optimization of an engineering system assembled in a
series configuration, with the redundancy of units and cor-
rective maintenance resources as optimization parameters.
The aim is to reach the maximum availability, considering
constraints installation and corrective maintenance costs,
weight and volume. They used GA as an optimization
method as well.

In brief, the system availability can be calculated by
approximate expression and Monte Carlo Simulation, of
which approximate expression has an advantage of rapid
computation along with more limitations, and the simula-
tion method is time-consuming. For the parameterization
of series-parallel system availability, it is difficult to obtain
the optimal solutions within a limited range of parameters.
In such case, it is possible to approach optimal solution
within a limited time frame by using the features of
generational evolution and parallel search of Genetic
Algorithms.

2.3. Genetic algorithms

Genetic Algorithm (GA) is a probabilistic search
method stimulated by genetic evolution (Holland, 1975).
It was initiated from the 1970s and widely applied to many
fields since 1980s. GA can efficiently solve the availability
optimization problem of series-parallel, as it is suitable to
the domain of feasible solution with non-linearity or dis-
continuity. Goldberg (1989) made a systematic study on
GA mechanism, and identified three basic operators: repro-
duction, crossover and mutation.

When the solution space to be searched is relatively
large, noisy, non-linear and complicated, the GA has
higher opportunity for obtaining near-optimal solutions.
The GA solely takes fitness function as its evaluation crite-
rion. It is also a parallel processing mechanism, which
searches for different areas by multiple starting points.
Based on continuous evolution of generations and efficient
search using the information of parent generation, it is pos-
sible to increase the speed of finding an optimal solution
(Lin, Zhang, & Wang, 1995). The mutation mechanism
provides more opportunities to overcome the spatial limita-
tions of local optimum, and allows for convergence
towards global optimum.

GA was applied to a wide variety of fields in recent dec-
ades (Lapa, Pereira, & De Barros, 2006; Lin, Wang, &
Zhang, 1997). It was also successfully used to solve the reli-
ability optimization problem of a series-parallel system.
Painton and Campbell (1995) solved the reliability optimi-
zation problem related to personal computer design. They
regarded a personal computer as a series-parallel system
of twelve components, each of which has three optional
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packages. This study utilized GA to obtain optimal solu-
tion under budgetary limitation. Yokota, Gen, and Ida
(1995) utilized GA to solve successfully the reliability opti-
mization problem of series-parallel system with parallel
components and several failure modes, which were for-
merly solved by the listing technique (Tillman, 1969). Coit
and Smith (1996a, 1996b) used GA to solve the reliability
optimization problem of series-parallel system meeting
the cost and weight constraints. The results proved that
GA offered more time-saving solution than the method
proposed by Bulfin and Liu (1985), or N&M algorithm
by Nakagawa and Miyazaki (1981). Yokota, Gen, and Li
(1996) applied GA to solve non-linear mixed integer pro-
gramming of reliability.

Meanwhile, Gen and Cheng (1996), Yang, Hwang,
Sung, and Jin (2000), Yun and Kim (2004), Kumral
(2005) also solved reliability problem via the help of GA.
Besides, GA was also utilized in determining preventive
maintenance schedules, while considering the reliability
and system cost (Bris, Chatelet, & Yalaoui, 2003; Lapa
et al., 2006; Samrout, Yalaoui, Chatelet, & Chebbo, 2005).

2.4. Computerized reliability design

In most of the industries, classical reliability-centered
design is employed to decide the design strategies using reli-
ability data without having an adequate interaction with the
maintenance and operational systems. This means that the
reliability-centered design process will be conducted with
no or limited access to the maintenance and operational
data/knowledge (Court, 1998; Hwang, Chow, & Huang,
1996). Gabbar, Yamashita, Suzuki, and Shimada (2003)
stated that the commonly developed maintenance strategies
were implemented and managed within the computerized
maintenance management system, which was usually sepa-
rated from the reliability-centered maintenance automated
environment. They presented a detailed system design
mechanism of improved reliability-centered maintenance
process integrated with computerized maintenance manage-
ment system. The proposed solution is integrated with
design and operational systems and consolidates some suc-
cessful maintainability approaches to formulate an effective
solution for optimized plant maintenance. A prototype sys-
tem is implemented by integrating with the various modules
of the adopted computerized maintenance management
system.

Besides, many information systems were built and a
wide variety of methods were used for product reliability
design. Varde et al. (1998) used probabilistic safety assess-
ment technologies and information to develop an operator
support system for research reactor operations and fault.
The system was capable of improving the reliability of
operator action and the reactor safety at the time of crisis
as well as in normal operation. Moon et al. (1998) used
Weibull plots to interpret the results of failure rate and
developed an automatic early warning system utilizing
expert systems and neural network to capture accurate
reliability knowledge. The system led to a significant boost
in productivity by at least 8 times in terms of process time.
Liu and Yang (1999) developed a computer package
named EASYDFQR for quality and reliability design.
Design engineers can use it to obtain important design
guidelines for quality and reliability. The system is a
PC-based expert system. Its knowledge base contains
expertise about quality and reliability, such as reliability
models, design approaches, failure modes, criticality analy-
sis, and fault tree analysis. It supports computer graphics
for the explanation of design guidelines. In addition, design
engineers can obtain the knowledge they need via the short-
est path using the system.

Data mining usually means the methodologies and tools
for an efficient new knowledge discovery from databases.
Chen and Hsu (2006) provided an alternative approach
by using GA-based mining approach to discover useful
decision rules automatically from the breast cancer data-
base. Their approach is capable of extracting rules, which
can be further developed as a computer model for the pre-
diction or classification of breast cancer potential like
expert systems.

A well-defined knowledge system for product reliability
design and availability optimization, however, was not
found in the literature. We attempted to construct an opti-
mization model and develop a knowledge-based system to
overcome some of the difficulty in accumulating design
knowledge.
3. Model construction

3.1. Manufacturing and repairing costs

3.1.1. Manufacturing cost

The manufacturing cost varies with different product
specifications. For electronic components, a longer MTFB
of manufactured components represents a lower failure (k)
and higher strength, indicating that the components feature
high reliability. The product quality is thus ensured once
the failure rate of components declines to a desired level.
In principle, while the failure rate (k) is lower, the compo-
nents are more difficult to fabricate, leading to a sharp
increase in the manufacturing cost (Li, 2001). There is a
relationship between the MTBF of components and the
manufacturing cost (Tillman, Hwang, & Kuo, 1980). We
adopted it in this study:

CðMTBFÞ ¼ a � ðMTBFÞb þ c ð1Þ

where C(MTBF) represents the component’s manufactur-
ing cost; a, b, c, are constants, representing the physical
property of the component, and b > 1. The relationship is
illustrated in Fig. 1(a).
3.1.2. Repairing cost
For a repairable system, failure of a certain component

in the system structure may lead to malfunction to some
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possible extent, or even impair the overall system efficiency.
In an effort to avoid such occurrence, it is necessary to
repair the faulty components of the system. It is always
intended for recovery as soon as possible in an event of sys-
tem failure. To facilitate the repair within a limited time
frame, experienced staff shall be required to work overtime
or repair using the state-of-the-art equipments. In such
cases, huge investment on work force and equipments will
lead to a higher repair cost, despite short repair time.
Assuming a linear relationship between MTTR and the
repairing cost of components, a lower MTTR indicates a
higher repairing cost, with the relationship shown in
Fig. 1(b).
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Fig. 3. Example of a series-parallel system.
3.2. Estimation of system availability

Under the framework of series-parallel system, the avail-
ability is usually calculated by simulation method. When
the components within reliability block diagram (RBD)
are operated independently with each other, the series-
parallel framework can be integrated and considered as a
single object framework (Birolini, 1999). The estimated
Fig. 2. Availability estimation
parameters of some basic series-parallel frameworks are
listed in Fig. 2. By simplifying in sequence up to the hierar-
chy of entire system, it is possible to list an approximate
expression availability of a series-parallel system. The sys-
tem framework is illustrated in Fig. 3.

The approximate expression assumes that the compo-
nents are operated independent of each other, failure rate
ki ( = 1/MTBFi) and repair rate li ( = 1/MTTRi) are con-
stants, ki� li, and each component is supported by a
maintenance team. The simplified framework, as well as
the simplified procedures, is shown in Fig. 4.
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of series-parallel systems.
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3.3. Models and formulation procedures

3.3.1. Notation and assumption

Av system availability
Tc total cost of system
MTBFi MTBF of component i

CMTBFi manufacturing cost of component i

Lb_MTBFi lower limit of MTBF of component i
Lb_CMTBFi manufacturing cost for lower limit of MTBF

of component i

Ub_MTBFi upper limit of MTBF of component i

Ub_CMTBFi manufacturing cost for upper limit of
MTBF of component i

MTTRi MTTR of component i

CMTTRi maintenance cost of component i

Lb_MTTRi lower limit of MTTR of component i
Lb_CMTTRi maintenance cost for lower limit of MTTR

of component i

Ub_MTTRi upper limit of MTT of component i

Ub_CMTTRi maintenance cost for upper limit of MTT of
component i

ai, bi, ci coefficient of functional relationship between
manufacturing cost and MTBF of component i,
and are positive constants

ai, bi coefficient of functional relationship between
manufacturing cost and MTTR of component i.

The assumptions are as follows. The failure rate k and
the repair rate l of system components are constants.
The failure time and the repair time are subjected to expo-
nential distribution, and MTBF�MTTR. To approxi-
mate system availability, it is required to meet MTBF�
MTTR, namely l� k, and assume that maintenance is
independent of each other. Besides, the functional relation
between MTBF or MTTR and the cost can also be clearly
defined.
3.3.2. Problem essence

Repairable series-parallel system has k components.
Each component i has two parameters: MTBFi and
MTTRi to be determined. Their relationship with cost is
shown in the following equations:

CMTBFi ¼ ai � ðMTBFiÞbi þ ci i ¼ 1; 2; . . . ; k ð3Þ

CMTTRi ¼ ai � bi �MTTRi i ¼ 1; 2; . . . ; k ð4Þ

The objective is to locate the design parameters of
MTBF and MTTR of each component so as to optimize
the system availability of per capital, i.e., availability
divided by total system cost. This also means that the
designer aims to find out a set of component parameters
in conformity to economic efficiency.

3.3.3. Formulation procedures

The proposed model and procedures are given in the
following.

Step 1: List the approximate expression of system
availability

Av ¼ f ðMTBF1; . . . ;MTBFk;MTTR1; . . . ;MTTRkÞ ð5Þ

Step 2: List the summation expression of system cost

Tc ¼
Xk

i¼1

ðai � ðMTBFiÞbi þ ciÞ þ
Xk

i¼1

ðai � bi �MTTRiÞ ð6Þ

Step 3: Construct an objective function

Max �Av

Tc

¼ f ðMTBF1;MTBF2; . . . ;MTBFk ;MTTR1;MTTR2; . . . ;MTTRkÞ
ð7Þ

Step 4: formulate constraints

s:t: : Lb MTBFi 6MTBFi 6 Ub MTBFi

Lb MTTRi 6MTTRi 6 Ub MTTRi i ¼ 1; 2; . . . ; k

ð8Þ

Step 5: Combine the formulations in Steps 3 and 4 to
form the optimization model.

Step 6: Solve the model with solution procedures of
GA.
3.4. Solution procedures of GA

The initial population was generated by GA using a set
of settings for operation. Each combination of solutions in
the population is called as an individual, which is presented
as a chromosome. Chromosome comprises genetic factors,
as genes in a series, and is represented by binary strings.
A coded chromosome represents design parameters in
terms of reliability design.
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3.4.1. Coding scheme

We used the chromosome encoding and decoding meth-
ods as follows. Assume that there are k variables to be
decided. Each variable xi is ranged between real number
ai and bi, with the accuracy of mth position after the radix
point:

1. Identifying the length of chromosome. Find out minimal
integral numberli, so (bi � ai) Æ 10m < 2li � 1, li is the
length of decimal code xi, and the resulting length of
each chromosome is:

l ¼
Xk

i¼1

li ð9Þ
Selection

Crossover and mutation

Roulette

wheel

2. Decoding each variable. Cut off integrally encoded chro-

mosome into k groups of binary bit in sequence, and
convert them into the decimal system by the following
formula:

xi ¼ ai þ decimalð1001 . . . 0012Þ �
bi � ai

2li�1
ð10Þ
Stop?

End

Generation t=t+1

Y

N

Fig. 5. Flow diagram of GA.
3.4.2. Operators

As the basic GA mechanism is derived by following the
evolution principle in the nature, it comprises gene frame-
work, selection, reproduction, crossover, gene mutation
and generation of new individuals within the chromo-
somes. The flow of GA operation is illustrated in Fig. 5.

The computational process of three GA operators,
namely reproduction, crossover and mutation, are described
below in detail.

3.4.2.1. Reproduction. Reproduction is to reproduce the
chromosome of original population into new one when
generating new population. We utilized the roulette wheel
to determine the probability for reproduction.

The roulette wheel method is a most frequently used
reproduction principle in the process of reproduction.
A chromosome encompassing a bigger slot has higher
probability of reproducing new generation. The area of
the slot is related to the fitness of the chromosome. The
selection probability of the individual, Pj, can be repre-
sented by the following expression:

P j ¼
fjPN
j¼1fj

ð11Þ
fj: fitness value of jth chromosome,
N: number of individuals in a population.
3.4.2.2. Crossover. Crossover exchanges the genes from two
chromosomes to generate new individuals. This mechanism
is primarily performed to generate chromosomes with bet-
ter fitness. Basically, there are three crossover schemes, i.e.
single-point, two-point and uniform. We employed the
two-point crossover scheme. In the two-point crossover,
the crossover points are generated randomly. The probabil-
ity of performing crossover is the crossover rate.

3.4.2.3. Mutation. To approach optimal solution without
trapping into local optimum, mutation is applied with a
specific probability. Mutation occasionally changes certain
genes in the chromosome. The selection is dependent upon
mutation rate, which is usually very small. This practice
is to avoid the numerous loss of excellent chromo-
somes, whereas not all genes of chromosomes require for
mutation.

After reproduction, crossover and mutation, it is neces-
sary to judge when to stop the evolution. There are some
options: (1) maximum number of generations, (2) compu-
tation time, and (3) the extent of progress over generations.

3.4.3. GA parameters

Setting GA parameters are mostly based on empirical
observation with respect to the problem variety (Elegbede
& Adjallah, 2003). The GA parameters used in this study
were retrieved from the availability design literature (Gen
& Cheng, 1996; Yang et al., 2000; Yokota et al., 1996).
Three parameters were set as listed in Table 1.



Fig. 7. Optimization process.

Table 1
GA parameters

Population size Crossover rate Mutation rate

Ps Pc Pm

100 0.9 0.01
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3.5. Empirical data and solutions

A practical repairable system of jet fighter engine design
is illustrated as an example. This system consists of eight
components, with its system framework shown in Fig. 6.
With reference to the availability and cost factors, it is pos-
sible to find out maximum overall efficiency of the entire
system.

The range of MTBF and manufacturing cost is tabu-
lated in Table 2. The range of MTTR and repair cost is
listed in Table 3.

The solution procedures were coded and embedded in a
knowledge management system. We will address the system
design process and concept in the rest of this paper. As
regard to the key procedure of GA solution, the users
1

2

3

4

8

7

6

5

Fig. 6. Block diagram of repairable system.

Table 2
Variance range of MTBF and manufacture cost of components

Component MTBF lower bound MTBF upper bound

1 1400 h ($1,012,452) 1600 h ($1,029,622)
2 1250 h ($903,874) 1450 h ($917,857)
3 1300 h ($908,976) 1500 h ($924,782)
4 1850 h ($1,353,896) 2150 h ($1,373,164)
5 1150 h ($983,849) 1250 h ($990,354)
6 1000 h ($852,421) 1100 h ($860,265)
7 700 h ($677,592) 800 h ($685,559)
8 850 h ($837,584) 950 h ($846,704)

Table 3
Variance range of MTTR and repair cost of components

Component MTTR lower bound MTTR upper bound

1 80 h ($350,102) 100 h ($335,105)
2 65 h ($341,271) 85 h ($330,272)
3 70 h ($334,936) 90 h ($322,938)
4 2 h ($405,736) 30 h ($400,749)
5 60 h ($296,436) 70 h ($291,438)
6 50 h ($291,972) 60 h ($286,964)
7 35 h ($286,103) 45 h ($281,305)
8 40 h ($290,038) 50 h ($285,437)
can configure and modify the defined parameters of the
objective function according to the database of the existing
design model. First, the system generated a chromosome
with a length of 97 according to the required precision.
Second, it configured the GA parameter according to Table
2 and set the termination criterion to a maximum number
of 4000 generations. The optimization process over gener-
ations has been illustrated in Fig. 7.

The optimal objective value and design parameters are
listed in Table 4. The execution time was 472.5 s. The opti-
mal values of MTBF and MTTR for each component can
also be obtained. The designers can therefore choose
proper components and determine the repair policy accord-
ing to the optimal design information.
4. System analysis and implementation

4.1. System analysis

The system is configured for installation at the R&D
department’s site with the database applications installed.
The system users are primarily series-parallel system
designers of the R&D department. The system database
is updated while the system receives commands from users
or generates computational results. While executing the
optimization process, the system responds to the users with
real-time result, which provides feedback for users to con-
trol the optimization process. Specifically, the system is
divided into five major modules, namely, user interface
module, database retrieval and storage module, design con-
Table 4
Optimal design parameter

MTBFs MTTRs

MTBF1 = 1403.14 MTTR1 = 97.8824
MTBF2 = 1270.39 MTTR2 = 81.8689
MTBF3 = 1314.17 MTTR3 = 87.9528
MTBF4 = 1880.71 MTTR4 = 2.2205
MTBF5 = 1153.23 MTTR5 = 67.4194
MTBF6 = 1025.81 MTTR6 = 59.3548
MTBF7 = 706.67 MTTR7 = 37.0000
MTBF8 = 870.00 MTTR8 = 48.6667
Optimal objective value = 9.89709e�08
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figuration module, GA-based optimization module, and
report generation module. The system flow diagram is illus-
trated in Fig. 8.

4.2. System implementation

The prototype system was developed by using C++ pro-
gramming language, an object-oriented program tech-
nique, including GA procedure coding and connection of
the database. The prototype was running on a web server
with Windows operation system. After test activity and sys-
tem refinement, the performance of the system was found
promising.
4.2.1. General structure

The general system structure by a set of pseudo code is
listed in the following. There are many sections in the
pseudo code. The first section (steps 1 to 3) depicts design
preparation such as determining the design type and
retrieving the data from the knowledge base. The second
section (steps 4 to 6) describes the file accessing process,
such as reading component parameter file and setting GA
parameters. The third section (step 7) depicts the GA based
optimization process, which include reproduction, cross-
over and mutation operations. The fourth section (step 8)
indicates the process of generating the report and storing
the design project.

1. Define system environment
2. Receive user selection from keyboard or mouse
3. if (selection is create_new_design)
Insert new record to basic_design_table
else search basic_design_table for existing record by
keyword
if (found) retrieve record from table

else goto 2
4. Define optimization model

4.1. Define optimum direction
4.2. Define objective function
4.3. Define constraints equation
5. Specify and read component data file; open report file
6. Define optimization parameters

6.1. Define GA parameters Pop, Pm, Pc, Ngene

6.2. Set initial valuables: Ntermi = 1, Tgene = 0, Ccount =
0, Cgene = 0, Ncount = 0, m0 = 0, StopFlag = 0
7. Execute optimization procedures
7.1. Create randomly the initial population P(0)
7.2. if (StopFlag = 0)/*check termination criterion*/
case Ntermi = 0: StopFlag = 1/*manually terminate
process*/
case Ntermi = 1: if (Ncount > Ngene) StopFlag =
1/*terminated by generation number*/
case Ntermi = 2: if (Ncount > Tgene) StopFlag =
1/*terminated by allowed run time*/
case Ntermi = 3: if (Ncount > Ngene and Ccount <
Cgene) StopFlag = 1/*terminated by convergence
over generation*/
7.3. Select Pop individuals that constitute population
Pco to be crossed

7.4. for (i = 1,2,Pop-1)

u1 = rand(0,1)
if (u1 < Pc) cross Pco(i) and Pco(i + 1) and generate
children Chd1 and Chd2
u2 = rand (0,1)
if (u2 < Pm)

mutation(Chd1); mutation(Chd2)
endif

else
Chd1 = Pco(i); Chd2 = Pco(i + 1)
endif
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Pct(i) = Chd1; Pct(i + 1) = Chd2/*Pct current popu-
lation indicator*/
endfor
7.5. Store best individual to BEST(Ncount)

if (BEST(Ncount) better than BEST(m0))

m0 = Ncount

if (Ntermi = 3 and BEST(Ncount) < Cgene)

Ccount = BEST(Ncount)

endif
endif
7.6. Call plot(Ncount, BEST(Ncount)) to update display

Write BEST(Ncount) and time stamp to report file
7.7. on case do (Ncount++)

goto 7.2
8. Update database and close report file.
4.2.2. Database design

The design of a database for the prototype system is
mainly based on relational database with Access. The
setting of primary keys and database normalization are
inevitable for implementing a database application system
successfully. The primary key is a field that uniquely
describes each record. In the course arrangement manage-
ment system, for instance, the design number was set to be
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Fig. 9. System structure with
the primary key in the data table storing design informa-
tion. This field is unique and generated by the coding reg-
ulation. There were five major tables used in the system,
including basic design table, optimization model table,
component attribute table, GA parameter table, and design
result table. Two file cabinets containing component setting
files and report files were also embedded in the system. The
optimization history is included in the report file, which can
be further accessed for plotting analytical charts. Fig. 9
shows the system structure with database manipulation.

4.2.3. Interface design

The system interface was designed considering system
usability. It allows users to input data by making their
choice from the list or type in numbers directly. Fig. 10 pre-
sents the design of system interface. Since the system is a
web-based application, it can operate with any Internet
browser. The process starts from retrieving an existing
design or creating a design from scratch. The central area
of the display mainly contains GA optimization settings
and control. Before the procedure is stopped according to
the specified criterion, we allow the procedures to terminate
manually. The optimization history is displayed on the
right of the screen with the current optimization result.
Users of the system can view the intact report after stop-
ping the optimization process.
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Fig. 10. Design of system interface.
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4.3. Knowledge management design

We attempted to make the system more user-friendly by
eliminating tedious data entry. For instance, the length of
chromosome can be automatically computed and con-
verted into the desired length when intended accuracy
was retrieved from the GA setting file. Likewise, the design
number and keyword of a modified design were restored
from the database, so that no re-entry was needed. It also
allowed the user to add phases to the keyword list before
storing the design in the database. If better objective values
are found, new solutions will be stored in the database and
output to the result file automatically.

The operating mechanism of crossover, reproduction
and mutation via Genetic Algorithms is the same, despite
the framework of series-parallel system. When designing
a new series-parallel system, minor modification to the
optimization configuration was sufficient, such as altering
objective function and constraints, adjusting component
number and refining parameters. Since the design knowl-
edge was stored and accumulated in the design library as
time elapsed, the definition of optimization process for a
new design can be rapidly completed with less effort. In
short, the design knowledge was accumulated by a process
of retrieving, modifying and storing design parameters,
which reduces the burden of system designers and increases
the efficiency of designing series-parallel systems from the
benefit of accumulated design knowledge.

5. Conclusion

In the intellectual economy era, the design of repairable
series-parallel system is inefficient if relying merely on
empirical method. It tends to cause increasing design cost
due to the difficulty of inheriting design experience.
Applying soft computing techniques such as Genetic Algo-
rithms to analyze and optimize the design problems of
repairable series-parallel system appears to be very helpful
in facilitating the decision-making of system parameter
design.

We proposed an optimization model with system avail-
ability and design constraints, and then obtained optimal
solution by employing Genetic Algorithms. We utilized
object-oriented program technique to develop a knowledge
system for the availability design of series-parallel systems,
which enabled the users to retrieve, modify and fine-tune
similar designs from the system database. The system pro-
vided the decision-maker with an effective tool to decide
the related characteristics of each component.

Several features of the optimization model are to be ade-
quately addressed to employ multiple criteria optimization
with weighted objective functions. The GA parameters can
be further optimized by experimental design as well. The
system developed in this study also needs more refinement.
As for the continuation of the exploitable and extendable
part of this study, we are seeking ways to improve some
features of the knowledge system. Further work will mainly
direct to enhancing the conversion capacity for facilitating
the data entry of objective function and constraints, and
functions of performing sophisticated plotting and statisti-
cal analysis from the design knowledge base.
References

Birolini, A. (1999). Reliability engineering theory and practice. NY:
Springer.



192 Y.-S. Juang et al. / Expert Systems with Applications 34 (2008) 181–193
Bris, R., Chatelet, E., & Yalaoui, F. (2003). New method to minimize the
preventive maintenance cost of series-parallel systems. Reliability

Engineering and System Safety, 82, 247–255.
Bulfin, R. L., & Liu, C. Y. (1985). Optimal allocation of redundant

components for large systems. IEEE Transactions on Reliability, R-34,
241–247.

Chen, T.-C., & Hsu, T.-C. (2006). A GAs based approach for mining
breast cancer pattern. Expert Systems with Applications, 30, 674–681.

Chern, M. S. (1992). On the computational complexity of reliability
redundancy allocation in a series system. Operations Research Letters,

11, 309–315.
Chisman, J. A. (1998). Using discrete simulation modeling to study large-

scale system reliability/availability. Computers and Operations

Research, 25(3), 169–174.
Coit, D. W., & Smith, A. E. (1996a). Solving the redundancy allocation

problem using a combined neural network/genetic algorithm
approach. Computers and Operations Research, 23(6), 515–526.

Coit, D. W., & Smith, A. E. (1996b). Reliability optimization of series-
parallel systems using genetic algorithm. IEEE Transactions on

Reliability, R45(2), 254–260.
Court, A. W. (1998). Issues for integrating knowledge in new product

development: reflections from an empirical study. Knowledge-Based

Systems, 11(7–8), 391–398.
De Castro, H. F., & Cavalca, K. L. (2006). Maintenance resources

optimization applied to a manufacturing system. Reliability Engineer-

ing and System Safety, 91(4), 413–420.
Elegbede, C., & Adjallah, K. (2003). Availability allocation to repairable

systems with genetic algorithms: a multi-objective formulation. Reli-

ability Engineering and System Safety, 82, 319–330.
Gabbar, H. A., Yamashita, H., Suzuki, K., & Shimada, Y. (2003).

Computer-aided RCM-based plant maintenance management
system. Robotics and Computer-Integrated Manufacturing, 19(5),
449–458.

Gen, M., & Cheng, R. (1996). Optimal design of system reliability using
interval programming and genetic algorithms. Computers and Indus-

trial Engineering, 31(1/2), 237–240.
Gen, M., Ida, K., & Lee, J. U. (1990). A Computational algorithm for

solving 0-1 goal programming with GUB structures and its application
for optimization problems in system reliability – Part 3. Electronics and

Communications in Japan, 73, 88–96.
Gen, M., Ida, K., Tsujimura, Y., & Kim, C. E. (1993). Large-scale 0-1

fuzzy goal programming and its application to reliability optimization
problem. Computers and Industrial Engineering, 24, 539–549.

Goldberg, D. E. (1989). Genetic algorithm in search, optimization, and

machine learning. Reading, MA: Addison-Wesley.
Gordan, J. (1996). Computational methods for reliability data analysis.

Annual Reliability and Maintainability Symposium, 287–290.
Hamersma, B., & Chodos, M. S. (1992). Availability and maintenance

considerations in telecommunication network design and the use of
simulation. Proceedings of AFRICON 1992 Conference, 267–270.

Henley, E. J., & Kumampto, H. (1985). Design for reliability and safety

control. New Jersey: Prentice-Hall.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann

Arbor, MI: The University of Michigan Press.
Hsieh, Y.-C., Chen, T.-C., & Bricker, D. L. (1998). Genetic algorithms

for reliability design problems. Microelectronics Reliability, 38,
1599–1605.

Huang, H.-Z. (1997). Fuzzy multi-objective optimization decision-making
of reliability of series system. Microelectron Reliability, 37(3), 447–449.

Hwang, Y.-J., Chow, L. R., & Huang, H. C. (1996). A knowledge-based
approach to the evaluation of fault trees. Reliability Engineering and

System Safety, 52(1), 77–85.
Jeang, A. (1999). Optimal process parameter determination for computer-

aided manufacturing. Quality and Reliability Engineering International,

15, 3–16.
Jeang, A. (2001). Computer-aided tolerance synthesis with statistical

method and optimization techniques. Quality and Reliability Engi-

neering International, 17, 131–139.
Kim, J. H., & Yum, B. J. (1993). A heuristic method for solving reliability
redundancy optimization problems in complex systems. IEEE Trans-

actions on Reliability, 42(4), 572–578.
Kohda, T., & Inoue, K. (1982). A reliability optimization method for

complex systems with the criterion of local optimality. IEEE Trans-

actions on Reliability, R31(1), 109–111.
Kumral, M. (2005). Reliability-based optimisation of a mine production

system using genetic algorithms. Journal of Loss Prevention in the

Process Industries, 18, 186–189.
Kuo, W., Lin, H., Xu, Z., & Zhang, W. (1987). Reliability optimization

with the Lagrange multiplier and branch-and-bound technique. IEEE

Transactions on Reliability, 36, 624–630.
Lapa, C. M. F., Pereira, C. M., & De Barros, M. P. (2006). A model for

preventive maintenance planning by genetic algorithms based in cost
and reliability. Reliability Engineering and System Safety, 91, 233–240.

Li, Z. L. (2001). Availability allocation of series-parallel system solved
from object-oriented planning, Unpublished master’s thesis, Feng-
Chia University, Taichung, Taiwan.

Lieber, D., Nemirovskii, A., & Rubinstein, R. Y. (1999). A fast Monte
Carlo method for evaluating reliability indexes. IEEE Transactions on

Reliability, 48(3), 256–261.
Li, D., & Haimes, Y. Y. (1992). A decomposition method for optimization

of large-system reliability. IEEE Transactions on Reliability, 41,
183–188.

Lin, S.-S., Wang, H.-P., & Zhang, C. (1997). Statistical tolerance analysis
based on beta distributions. Journal of Manufacturing Systems, 16(2),
150–158.

Lin, S.-S., Zhang, C., & Wang, H.-P. (1995). On mixed-discrete nonlinear
optimization problems: a comparative study. Engineering Optimiza-

tion, 23, 287–300.
Liu, T. I., & Yang, X. M. (1999). Design for quality and reliability using

expert system and computer spreadsheet. Journal of the Franklin

Institute, 336(7), 1063–1074.
Martorell, S., Sánchez, A., Carlos, S., & Serradell, V. (2004). Alternatives

and challenges in optimizing industrial safety using genetic algorithms.
Reliability Engineering and System Safety, 86(1), 25–38.

Misra, K. B., & Sharma, U. (1991). An efficient algorithm to solve integer
programming problems arising in system reliability design. IEEE

Transactions on Reliability, 40(1), 81–91.
Mitchell, B. F., & Murry, R. J. (1996). Predicting operational availability

for systems with redundant, repairable components and multiple
sparing levels. Annual Reliability and Maintainability Symposium,
301–305.

Mohan, C., & Shanker, K. (1998). Reliability optimization of complex
systems using random search technique. Microelectronics and Reliabil-

ity, 28(4), 513–518.
Moon, Y. B., Divers, C. K., & Kim, H.-J. (1998). AEWS: an integrated

knowledge-based system with neural networks for reliability predic-
tion. Computers in Industry, 35(2), 101–108.

Nakagawa, Y., & Miyazaki, S. (1981). An experimental comparison of the
heuristic methods for solving reliability optimization problems. IEEE

Transactions on Reliability, 30, 181–184.
Painton, L., & Campbell, J. (1995). Genetic algorithms in optimization of

system reliability. IEEE Transactions on Reliability, 44, 172–178.
Prasad, V. R., & Kuo, W. (2000). Reliability optimization of coherent

systems. IEEE Transactions on Reliability, 49, 323–330.
Propst, J. E., & Doan, D. R. (2001). Improvements in modeling and

evaluation of electrical power system reliability. IEEE Transactions on

Industry Applications, 37(5), 1413–1422.
Samrout, M., Yalaoui, F., Chatelet, E., & Chebbo, N. (2005). New

methods to minimize the preventive maintenance cost of series-parallel
systems using ant colony optimization. Reliability Engineering and

System Safety, 89, 346–354.
Tillman, F. A. (1969). Optimization by integer programming of con-

strained reliability problems with several modes of failure. IEEE

Transactions on Reliability, R18(2), 47–53.
Tillman, F. A., Hwang, C.-L., & Kuo, W. (1980). Optimization of systems

reliability. New York: Marcel Dekker.



Y.-S. Juang et al. / Expert Systems with Applications 34 (2008) 181–193 193
Varde, P. V., Sankar, S., & Verma, A. K. (1998). An operator support
system for research reactor operations and fault diagnosis through a
connectionist framework and PSA based knowledge based systems.
Reliability Engineering and System Safety, 60(1), 53–69.

Wang, Z.-H. (1992). Reliability engineering theory and practice (5th ed.).
Taipei: Quality Control Society of Republic of China.

Wang, W.-D. (2000). Confidence limits on the inherent availability of
equipment. Annual Reliability and Maintainability Symposium, 162–168.

Yalaoui, C. C., & Chatelet, E. (2005). Reliability allocation problem in a
series-parallel system. Reliability Engineering and System Safety, 90,
55–61.

Yang, J.-E., Hwang, M.-J., Sung, T.-Y., & Jin, Y. (2000). Application of
genetic algorithm for reliability allocation in nuclear power plants.
Reliability Engineering and System Safety, 65, 229–238.
Yokota, T., Gen, M., & Ida, K. (1995). System reliability of optimization
problems with several failure modes by genetic algorithm. Japanese

Journal of Fuzzy Theory and Systems, 7(1), 117–135.
Yokota, T., Gen, M., & Li, Y.-X. (1996). Genetic algorithm for non-linear

mixed integer programming problems and its applications. Computers

and Industrial Engineering, 30(4), 905–917.
You, P.-S., & Chen, T.-C. (2005). An efficient heuristic for series-parallel

redundant reliability problems. Computers and Operations Research,

32, 2117–2127.
Yun, W. Y., & Kim, J. W. (2004). Multi-level redundancy optimization

in series systems. Computers and Industrial Engineering, 46, 337–
346.


	A knowledge management system for series-parallel availability optimization and design
	Introduction
	Literature review
	Reliability of series-parallel system
	System availability
	Genetic algorithms
	Computerized reliability design

	Model construction
	Manufacturing and repairing costs
	Manufacturing cost
	Repairing cost

	Estimation of system availability
	Models and formulation procedures
	Notation and assumption
	Problem essence
	Formulation procedures

	Solution procedures of GA
	Coding scheme
	Operators
	Reproduction
	Crossover
	Mutation

	GA parameters

	Empirical data and solutions

	System analysis and implementation
	System analysis
	System implementation
	General structure
	Database design
	Interface design

	Knowledge management design

	Conclusion
	References


